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Abstract 
 
This paper proposes an integrated system for motor bearing diagnosis that combines the cepstrum coefficient method 

for feature extraction from motor vibration signals and artificial neural network (ANN) models. We divide the motor 
vibration signal, obtain the corresponding cepstrum coefficients, and classify the motor systems through ANN models. 
Utilizing the proposed method, one can identify the characteristics hiding inside a vibration signal and classify the sig-
nal, as well as diagnose the abnormalities. To evaluate this method, several tests for the normal and abnormal condi-
tions were performed in the laboratory. The results show the effectiveness of cepstrum and ANN in detecting the bear-
ing condition. The proposed method successfully extracted the corresponding feature vectors, distinguished the differ-
ence, and classified bearing faults correctly. 
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1. Introduction 

Machine condition monitoring (MCM) is an area of 
increasing importance in the manufacturing industry. 
The bearing of the rotating machines, which has been 
commonly used in the industry for decades, is one of 
the machines’ most important elements and is com-
monly the reason for the equipment breakdown. Zarei 
mentioned in [1] that more than 40% of motor fail-
ures are bearing-related. Bearing fault detection and 
identification have been substantially investigated, 
and many algorithms have been proposed during the 
past few decades. Several methods have been used to 
analyze the vibration signal in order to extract effec-
tive features for bearing fault detection. Among them, 
Heng and Nor [2] used statistical data such as mean 
value and standard deviation to monitor the bearing 
conditions; Li et al. [3] and Ye et al. [4] trained an 
artificial neural network (ANN) from the frequency 

and amplitude data of the bearing system; Goddu et al. 
[5] applied fuzzy logic inference rules to judge the 
bearing conditions; Zarei [1] and Eren [6] used the 
wavelet packet transform to decompose the vibration 
signals; Cheng [7] and Yu [8] used the empirical 
mode decomposition (EMD) and Hilbert spectrum to 
analyze the experiment data and moved away from 
the non-stationary mode of bearing faults. Feature 
extraction is one of the most important factors in pat-
tern recognition problems. The process involves de-
riving new features from raw data in order to reduce 
the dimensionality of data presented to the classifier 
while improving the classification efficiency. In this 
paper, we will present a new, efficient, and fast fea-
ture-extracting method for detecting and discriminat-
ing general motor bearing faults from a segment of 
pattern. For machine condition monitoring signal 
analysis, ANN and the cepstrum coefficient method 
were utilized in this study. 

The term “cepstrum” was first introduced by 
Bogert [9] and mainly applied to speech recognition 
[10]. It has since become an accepted terminology to 
refer to the inverse Fourier transform of the logarithm 
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of a signal’s power spectrum. The cepstrum of a sig-
nal is defined as the inverse Fourier transform of the 
log power spectrum of a signal [11], and cepstrum 
coefficients are the measurements of the spectrum. 
Cepstrum coefficients are derived from the linear 
predictor coefficients [9], which are extracted from 
each frame by the auto-correlation method and 
Durbin’s recursive procedure. The ANN has potential 
applications in automated detection and in the diag-
nosis of machine conditions [12]. By combining these 
two techniques, a reliable automatic motor fault diag-
nosis system employing cepstrum transform to extract 
features from segmented motor vibration information 
is proposed. Faults are classified according to the 
features extracted from the segmented data using 
ANN. In addition to normal motor testing (NOR), the 
proposed system is designed to distinguish four faults, 
including an unaligned bearing axis, and loose bear-
ing accessories such as pedestals, shims, and wedges. 
To verify our methods, laboratory testing data were 
used for processing in this study. 

Based on the features of input fault pattern, the de-
cision-making process of the ANN is holistic, and it is 
suitable for the classification of fault monitoring data. 
Different network topologies and powerful learning 
strategies are used to solve nonlinear problems. [13]. 
For the present application, back propagation with 
momentum was used to train the feed forward neural 
network. Every fault with forty different segmented 
motor vibration data was collected for ANN evalua-
tion of this system. Twenty signals from each cate-
gory were used as training sets for the network, with 
the remaining signals used for testing. 

To address the issues discussed above, this paper is 
organized as follows. Cepstrum-based feature extrac-
tion method is addressed in Section II. The ANN used 
for the classification task in this study is described in 
Section III. Section IV provides some discussions 
based on experimental results. The advantages and 
limitations of the cepstrum-based feature extraction 
method are concluded in Section V. 
 
2. Cepstrum coefficient extraction algorithm 

for motor-bearing vibration signal 

The characteristics of an unknown motor vibration 
signal were compared with those in the database. In 
this study, we proposed utilizing cepstrum techniques 
to extract and compare the characteristics of bearing 
fault signals. The algorithm in Fig. 1 contains three 

major steps: (i) start point detection, (ii) feature ex-
traction, and (iii) feature comparison. After these 
steps, the characteristics of a motor vibration signal 
will be classified and used to recognize possible bear-
ing faults. There are two major portions in the cep-
strum extraction algorithm: first is to build up the 
template database, and the second is to identify the 
unknown signals. 

For those motor vibration signals with already 
known symptoms, the processes shown at the left 
column in Fig. 1 are to extract the characteristics from 
the signals and save them as standard reference tem-
plates. Each signal will go through the start point 
detection and feature extraction processes before their 
characteristics are saved into the standard reference 
template database. For unknown signals, usually col-
lected through real-time motor condition monitoring, 
the processes shown in the right column of Fig. 1 will 
be used to extract the characteristics. These character-
istics will be compared to the template in order to 
distinguish possible symptoms if the signals contain 
any abnormalities. Detailed descriptions for each step 
will be discussed in the following sections. 

 
2.1 Start point detection of segment data 

The motor vibration signal is wholly saved as stan-
dard reference or used for comparison; therefore, 
processing of more data is required. Based on the 
characteristics of a motor monitoring signal, it is nec-
essary to extract proper features for comparative rec-
ognition. We divide the meaningful block of motor 
vibration data for processing. First, as a starting point 
of segment data, the peak positions are found by a 
threshold value and a moving window. The proce-
dures are described as follows. 

Step 1. Estimate a maximum peak value of the first 
wave from the motor vibration signal during a time 
interval (about 2 s). The 50% peak value is chosen to 
be an initial amplitude threshold. 

Step 2. Use the initial amplitude threshold to search 
for the waveform’s next peak value in a 0.125-s 
searching window. When the peak position is found, 
add a time interval (about 0.0625 s) to determine the 
the next starting point of the next searching window. 

Step 3. Repeat step 2 until the first five positions 
and peak values of waveform are found. 

Step 4. Average these five peak values to obtain the 
average amplitude threshold. 

Step 5. Move the search window and estimate other  
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Fig. 1. Systemic block diagram for cepstrum extraction algo-
rithm. 

 
wave peak positions with 70% of this average ampli-
tude threshold. Choose one peak position, which is 
defined to be the starting-point of the meaningful 
motor fault data, and the following 1,500 points 
(about 0.125 s) of data for the feature extraction proc-
ess. The length of processing data, used to classify the 
bearing faults, is chosen according to the mechanic’s 
suggestions. 

 
2.2 Feature extraction 

The procedures of feature extraction, shown in Fig. 
2, include three steps: (i) Signal Segmentation, (ii) 
Linear Predict Coding (LPC) Coefficient Extraction, 
and (iii) Cepstrum Coefficient Extraction. 

First, the meaningful segment vibration data need 
to be divided into multi-frames. All the feature extrac-
tions were based on one frame as a unit to get the 
corresponding feature vector. The segment data was 
divided into 10 frames. Hence, each frame was com-
posed of 150 points (12.5 ms) for extracting 10 cep-
strum feature coefficients. The data in each frame 
were multiplied by a Hamming window of 25 ms, 
resulting in a 50% overlapping between one frame 
and the next in order to maintain the continuity of 
bearing fault signals as follows: 
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Fig. 2. Feature extraction steps. 
 
where S (n) is the motor vibration original signal, W 
(n) is the Hamming window function, X (n) is the nth 
output result, and N is the length of the window. 

Secondly, the LPC coefficients will be analyzed to 
obtain the cepstrum coefficients. The linear prediction 
technique has been proven to be very useful in pro-
viding an efficient representation of the speech sig-
nals [13-15]. The basic idea of the linear prediction 
coding is that a hypothetical motor vibration sample 
can be predicted by linear combination of previous p 
samples. The LPC coefficient is aimed at reducing the 
variation between an actual motor vibration sample 
and a predicted sample to a minimum to find the best 
predictor for linear combination [13]. The actual mo-
tor vibration data sequence X (n) can be approximated 
by another sequence 

~
( )X n which is determined by a 

unique set of predictor coefficients and the past p 
samples X (n). That is 
 

1

( ) ( )
p

k
k

X n X n kα
=

= −∑   (3) 

 
where p is the number of order predicted by LPC and
αk is the kth linear predictive coefficients (LPC). The 
difference between the actual vibration sequence and 
the predicted sequence is generally named residual 
error e (n) and is expressed as the following: 
 

1
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k
k
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The weighting coefficient αk in Equation (4) can be 

determined by minimizing the mean squared residual 
error, and the best prediction can be obtained by set-
ting 
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and obtaining 
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Eq. (6) can be re-arranged as the following matrix 

form: 
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where Rk is a short-time autocorrelation coefficient of 
X(n). The variables {αk i} can be solved by using 
Durbin’s recursive procedure. The cepstrum coeffi-
cient is generally defined as the inverse Fourier trans-
form of the spectrum over a short interval, which can 
be expressed in the following equation as 
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where X(k) is the Fourier transform of the motor vi-
bration signal X(n). The spectral features of envelope 
and minute changes in vibration signals can be pre-
sented by using cepstrum analysis to avoid the com-
plicated calculation in Eq. (9). Generally, cepstrum 
coefficient can be derived from previous LPC coeffi-
cients through the following recursive procedure: 
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where α(n) is the obtained LPC linear prediction coef-
ficient, C(n) is the target cepstrum coefficient, and n 
is the order of the cepstrum coefficient. We can get a 
10-element vector [C(0), C(1), C(2),…, C(9)] that 
represents the feature vector of this frame, and it can 
be used to do the feature comparison in the next sec-
tion. There are no significant differences in cepstrum 
coefficient for the prediction order n which is larger 
than 10. The cepstrum features of segment motor 
vibration data divided into 10 frames is defined by 
 

1 10
_ [ ][ ],

1 10
i

Cep Feature i j
j

≤ ≤⎧
⎨ ≤ ≤⎩

   (11) 

 
 
Fig. 3. Architecture of the neural network. 
 
where i is the frame number and j is the order of cep-
strum coefficient of the i-th frame. 
 
3. Detection using ANN classification  

ANN is probably one of the most common classifi-
ers in use today. In this section, a supervised artificial 
neural network (ANN) is developed to recognize and 
classify the cepstrum features of segment motor vi-
bration signals. Since the classification of arrhythmia 
is a complicated problem, we used a feed-forward 
neural network with two hidden layers as shown in 
Fig. 3. All neurons were defined as sigmoid activation 
functions. The input layer consisted of nodes for mo-
tor vibration measurements, and in the subsequent 
hidden layers, the process neurons with the standard 
sigmoid activation functions were used. The output 
layer contained four neurons to distinguish the motor 
vibration signals into five classes. 

The neural network was trained by the back propa-
gation algorithm (BPA) with the selected vibration 
segments as its inputs and the weights of neurons as 
its outputs. The BPA is a supervised learning algo-
rithm, in which a sum square error function is defined, 
and the learning process aims to reduce the overall 
system error to a minimum. 

The output units have weights W3
i,j, and the hidden 

units have weights W1
i,j and W2

i,j . During the training 
phase, each output neuron compares its computed 
activation yk with its target value dk to determine the 
total square error E for the pattern with that neuron, 
 

2

1
1/ 2 ( )

m

k k
k

E d y
=

= −∑    (12) 

 
where m is the number of output neurons, k represents 
the kth neuron. By using BPA, the network has been 
trained with moderate values of learning rate and 
momentum. The weights will be updated for every 
training vector. The training will be terminated when 
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the sum square error reaches a minimum value. 
The weights are randomly assigned at the begin-

ning and progressively modified backward from the 
output layer to the input layer to reduce the overall 
system error. The weight update is in the direction of 
“negative descent” to maximize the speed of error 
reduction. For effective training, it is desirable that 
the training data set be uniformly distributed through-
out the class domains. The available motor vibration 
data will be used repetitively until the error comes to 
a minimum. Hence, an algorithm containing three 
steps, namely, (i) setting random weights, (ii) training 
recursion and (iii) classification steps, is used to ob-
tain the correct class. 

Step 1: Setting initial weight data and biases. Ini-
tially, we set all the weights in the net to a random 
number between 0 and 1. 

Step 2: Training recursively. The cepstrum features 
of segment motor vibration data [x0, x1, x2,…,xn-1] will 
be fed into the input layer and will set the target vec-
tor. Since this ANN is designed to be a classifier, only 
one of five output neurons will be set as one and oth-
ers will be zero. For instance, if the motor vibration 
data is classified to be the first class, the vector of 
output neurons will be [1,0,0,0,0], so [1,0,0,0,0] de-
notes the normal condition, [0,1,0,0,0] denotes the 
unaligned bearing axis, [0,0,1,0,0] denotes the loose 
bearing pedestal, [0,0,0,1,0] denotes the loose bearing 
shim, and [0,0,0,0,1] denotes the loose bearing wedge. 
The ANN weights and biases are adjusted to mini-
mize the least-square error. The minimization prob-
lem is solved by the gradient technique, in which the 
partial derivatives of E with respect to weights and 
biases have been calculated using the generalized 
delta rule. This is achieved by back-propagation (BP) 
of the error. Convergence is sometimes faster if a 
momentum term is added to the weight update for-
mula. In the back-propagation with momentum, the 
weights for training step t+1 are based on the weights 
at training steps t and t-1. The weight update formulas 
for BP with momentum are 
 

'( 1) ( )ij ij j i ijw t w t x wηδ α+ = + + ∆    (13) 
 
where wi,j (t) is the weights from hidden layer or input 
layer to node j at step t, '

ix can be input or output at 
node i, η  is the learning factor, α is the momentum, 

jδ  is the error items at node j, and [ ( ) ( 1)ij ij ijw w t w t∆ = − − . 
There are two cases: 

(i) If j is the node of output layer, then 

 
 
Fig. 4. Block diagram of the bearing fault classifier. 

 
(1 )( )j j j j jy y d yδ = − −    (14) 

 
where yj is the output value at node j, and dj is the 
target value at node j.  

(ii) If j is the node of hidden layer, then 
 

(1 )( )j j j j jy y d yδ = − −    (15) 
 
where k is the total number of nodes at the layer 
where node j is. The weights and biases are assigned 
some initial random values and updated in each itera-
tion (called an epoch) until the net has settled down to 
a minimum. 

Step 3: Testing and classification: By using back 
propagation algorithm, the network has been trained 
with moderate values of learning rate (η) and momen-
tum (α). The weights are updated for every training 
vector, and the termination bearing a condition that 
the sum square error reaches a minimum value. The 
following steps are performed for arrhythmia recogni-
tion: 

The segment of motor vibration signal considered 
for analysis consists of 1,500 points of data for feature 
extraction processing. 

Cepstrum coefficients are calculated and trans-
ferred to -100 elements vector. 

Feature vector is given as input to the neural net-
work, which has an optimal set of weights. 

Classification of the input data set is carried out by 
the trained neural network. 
 

4. Results and discussion 

Motor vibration records with normal bearing and 
different types of bearing faults were collected from 
the laboratory for analysis. We utilized the database 
of the acceleration signals for (i) normal condition, 
(ii) un-aligned bearing, (iii) loose bearing pedestal, 
(iv) loose bearing wedge, and (v) loose bearing shim. 
After filtering high-frequency noise and lower-
frequency drifting, the start-point was located and 
meaningful signals were treated as the input segment 
of feature extraction, as shown in Fig. 5. Ten frames  
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Fig. 5. Acceleration signals for (i) normal condition, (ii) un-
aligned bearing, (iii) loose bearing pedestal, (iv) loose bear-
ing wedge, and (v) loose bearing shim. 

 

 
 
Fig. 6. The cepstrum coefficients of five classes. 

 
were generated with Hamming windows and then 100 
cepstrum coefficients were obtained. The cepstrum 
features of five bearing fault signals are compared in 
Fig. 6. 

One can easily find the difference in cepstrum co-
efficient of the five bearing fault signals in the first 
frame from Fig. 6. The special feature of the cepstrum 
analysis is that it allows for the separate representa-
tion of the spectral envelope and fine structure. The 
block diagram of cepstrum analysis for extracting 
spectral envelope and fundamental period is shown in 
Fig. 7. In this study, it was demonstrated that the neu-
ral network combined with the cepstrum transform 
feature extraction provided an excellent combination 
in automatic bearing fault diagnosis. 

It is believed that the combination of cepstrum with 
the neural network provides a good solution for 
automatic fault detection system in the future. Forty-
segment input data with the same bearing fault signal  

  
Fig. 7. Block diagram of cepstrum analysis for extracting 
spectral envelope and fundamental period. 
 

 
 
Fig. 8. The training performance of the network. 
 
were appropriately arranged to be the training and 
testing patterns. Each segment consists of 1,500 data 
samples. Two hundred bearing fault patterns were 
collected from the experimental data for the ANN 
training and evaluation of this system. A sample of 
the training performance for the network is shown in 
Fig. 8. The best multi-layer perceptron (MLP) struc-
ture found in the experiments was 100-20-20-4. 

Table 1 lists the results of the ANN model used in 
the bearing fault classification. The accuracy of a 
bearing fault classifier was defined as the ratio of the 
number of segment data correctly classified to the 
total number of data tested. The accuracy of classifi-
cation in the testing mode was 100%, that is, all 20 
testing data sets were correctly classified to the corre-
sponding classes. Table 2 shows the result of the pro-
posed method used in the classification of bearing 
fault. There are a total of 100 testing data sets used to 
test the accuracy of the trained neural network to di-
agnose different motor bearing faults. Table 3 shows 
the output vector of the neural network for the bearing 
faults diagnosis scheme. The results demonstrate that 
with proper processing of the measured data and pos- 
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Table 1. Back-propagation bearing fault models. 
 

Architecture 100-20-10-4 

η 0.3 

α 0.1 

*SSE <0.01 

Epochs 2885 

Training sets (**cc %) 100 

Testing sets (cc %) 100 

*SSE is sum square errors; **cc % is accuracy. 
 
Table 2. Overall performance of the proposed method. 
 

Method cepstrums+ANN 

Number of arrhythmia types  5  

Training accuracy in % 100 

Testing accuracy in % 100 
 
Table 3. Test sample and its output. 
 

Test sample Output Vector of ANN 

Normal condition [0.9496, 0.0347, 0.0000, 0.0086, 0.0000]

Unaligned bearing axis [0.0222, 0.9361, 0.0036, 0.0201, 0.0094]

Loose bearing pedestal [0.0000, 0.0013, 0.9693, 0.0270 ,0.0263]

Loose bearing shim [0.0259, 0.0185, 0.0003, 0.9555, 0.0213]

Loose bearing wedge [0.0008, 0.0000, 0.0315, 0.0291, 0.9493]

 
sible training procedure, the proposed method can 
diagnose bearing faults with the desired accuracy. 

The proposed cepstrum and ANN techniques can 
also extract real-time features and classify them to 
database-referred feature patterns to effectively detect 
the occurrence of sudden bearing faults in the MCM 
field. 
 

5. Conclusion 

In this article, a cepstrum-based feature extractor 
and ANN techniques were proposed for the extraction 
and classification of features from raw vibration data. 
They were successfully applied to the problem of 
bearing fault classification. Experiments showed that 
this algorithm was effective in finding a nonlinear 
mapping between five bearing conditions. Different 
features were correctly classified to the corresponding 
classes, resulting in a classification accuracy of 100%. 
On the other hand, when a long-term machine condi-
tion monitoring was required for a rotor machine, the 
algorithm was valid only if its normal signal block 
was accessed and saved into its own database. Com-

paring the extraction of real-time feature with that of 
a database-referred feature, the algorithm was able to 
detect the occurrence of sudden bearing faults effec-
tively. 
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