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Abstract 
 
This paper is concerned with application of artificial neural network (ANN) to the ring compression test for simultaneous 

determination of the flow curve of the material and the friction factor. The developed ANN model was trained using data from 700 finite-
element (FE) simulations of the ring test. The load curve of this test and the final internal diameter of the sample are the inputs for this 
ANN model and the outputs are the strength coefficient, strain hardening exponent and the friction factor. It was found that the outputs of 
the developed ANN model were in good agreement with the experimental results.   
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1. Introduction 

The flow curve and friction coefficient are very important 
data in metal forming analyses. For this reason, several meth-
ods have been proposed for determination of the friction coef-
ficient and flow stress, each having its own advantages and 
shortcomings. In metal forming investigations, the cylindrical 
compression test is usually used for specifying the flow curve 
and the friction coefficient is normally determined by means 
of the ring compression test [1, 2]. However the latter can be 
employed for both the purposes [3]. 

The main objective of the present research work has been 
identifying the flow curve of the material and the interfacial 
friction coefficient by means of the ring test and using an arti-
ficial neural network (ANN). A deep experimental study on 
the ring test was carried out by Fereshteh-Saniee et al. [1] in 
order to model friction when Plasticine and lead were em-
ployed as the model materials. By proposing different fric-
tional conditions and lubricants they created an almost full 
range of friction factors (from nearly zero to sticking frictions) 
for model tests with Plasticine and lead. 

Robinson et al. [4] studied the ring compression test using 
physical modeling tests and finite element (FE) simulations. 
They suggested that a combined physical and FE simulations 
could provide a simple and effective mean in studying the 
frictional mechanisms for bulk material processing. 

In order to determine the deformation pattern at the speci-
men-tool interface, Noh et al. [5] employed a perfectly-plastic 
material model for numerical simulation of the ring compres-
sion test. They studied various aspects of the ring test, such as 
surface enlargement, distribution of the interfacial pressure 
and relative sliding velocity, and concluded that these are sig-
nificantly affected by the level of friction at the tool-
workpiece interface. 

ANN technique can be employed for flow stress prediction 
of different materials. Bahrami et al. employed an ANN 
model to calculate the flow stress of 304 stainless steel [6]. 
Strain rate, strain and temperature were considered as input 
parameters and flow stress was the output parameter. They 
concluded that ANN could be a practical technique for esti-
mating the flow stress of the material under consideration. 

Cavaliere [7] employed artificial neural network technique 
for prediction of flow curves of a particle–reinforced alumi-
num alloy. He used a training data set with six inputs (strain ε , 
temperature T, strain rate ε& , ln ,  lnε ε& and 1/T) based on the 
experimental flow curves and one output, namely flow stress 
(σ). Employing the ANN-based model for prediction of the 
new flow curves, not involved in the training data set, showed 
an excellent capability of the developed predictive model. 

For training an ANN, a set of input data are required. Using 
experimental data for training ANN is very time and cost con-
suming. The finite-element method is an appropriate approach 
to provide input data for training ANNs. Finally, the predic-
tions made by the ANN can be verified experimentally. To-
parli et al. [8] used FEM results for training an ANN in order 
to predict temperature distribution and thermal residual  
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stresses in cylindrical specimens. Sudarsana Rao et al. [9] also 
employed a GA-based neural network to simulate stress-strain 
behavior of ceramic-matrix composites. They used FE simula-
tions for the training process of ANN and the numerical pre-
dictions were in good agreement with the FE results. 

Shin et al. [10] proposed an inverse method for evaluation 
of the flow curve and interfacial friction by using the ring 
compression test. They employed a function for the flow 
stress and calculated the coefficient of this function by mini-
mizing the differences between the numerical and experimen-
tal load-displacement curves, and barreled shapes of the FE 
model and the test sample. 

This paper is concerned with simultaneous determination of 
the flow curve and friction factor based on the load-
displacement curve obtained from a ring test. To achieve these 
goals a feed-forward back-propagation (FFBP) neural network 
model was developed. The training data set for this model 
involved the numerical results obtained from 700 finite ele-
ment simulations of the ring compression test. After training 
process, the validation of the ANN model was performed 
using new FE data not included in the original training data set. 
Several practical ring compression tests were also conducted 
under dry and lubricated conditions. Using experimental re-
sults as input data for the developed ANN and comparing the 
outputs of the network with findings obtained from the tradi-
tional cylindrical compression test and calibration curves of 
the ring test, it was concluded that the accuracy of the pro-
posed ANN model was encouragingly very good. The novelty 
of the present research work is using the load-displacement 
curve of the ring test and the internal diameter of the deformed 
ring as input data into the developed ANN model in order to 
obtain the stress-strain curve of the material and the interfacial 
shear friction factor. 

 
2. Theory of artificial neural networks 

The neural networks are essentially connectionist systems, 
in which various nodes, called neurons, are linked to each 
other. A neuron receives one or more input signal and, de-
pending on the processing function involved, provides an 
output signal. This output is transferred to other neurons with 
different intensities, based on the weights specified [11]. 

A feed forward network involves an order of layers, each 
layer including several neurons. The outputs of neurons of a 
layer are inputs to the neurons of the next layer. The first layer, 
namely the input layer, receives the data from the user and the 
last layer, which is called the output layer, prepares the output 
data for the user. The middle layers are called hidden layers. 
The presence of hidden layers provides complexity for the 
network architecture and this complexity is employed for 
modeling nonlinear relationships [11]. 

Depending on the presence or lack of feedback in the archi-
tecture of a neural network, there are two separate types of 
networks, namely with feedback architecture and with feed-
forward architecture, respectively. In feed-forward architec-

ture, there is no returning connection from output neurons to 
the input neurons. A network with feed-forward architecture 
has been employed in the present study.  

In general, there are two different methods for learning the 
network, namely supervised and unsupervised learning tech-
niques. In supervised learning, an input data is related to a 
specified output i.e. the learning process is performed with the 
pairs of data. Unsupervised learning method is used where the 
output or target values are unspecified [12]. Selection of the 
best and fastest learning algorithm for solving a problem is 
very important and difficult. One of common algorithms for 
adjusting the weights is back-propagation algorithm. This 
algorithm, which is a sort of supervised learning techniques, is 
employed in this investigation. 

A network starts working with a set of initial weights and 
then, gradually modifies the weights in a training cycle until 
the desired weights are achieved. The desired weights perform 
the input-output mapping with the least error. The training 
process contains two passes, namely forward and reverse 
passes. In a forward pass, the input signals are distributed 
from the input to the output of the network. In the reverse pass, 
however, the calculated error signals are taken backward in 
the network in order to adjust the values of the weights. With 
this regard, an effective optimization method can be used for 
minimizing the error, when the weights are adjusted. Calcula-
tion of the outputs is carried out layer by layer and in the for-
ward direction. The output of a layer is the input for the sub-
sequent layer. In the reverse pass the weights of the output 
neurons are initially adjusted because the target value of each 
output neuron is available. Afterwards, the weights of middle 
layers are changed. Since there is no target value for a middle 
layer, the errors of previous layers are taken backwards, layer 
by layer, in the network. This algorithm is called a back-
propagation algorithm. The trained network is then validated 
with a set of data. If the testing error is greater than the train-
ing error, it can be claimed that the network possesses exces-
sive overfitting with the data. For a network with good overfit-
ting, the testing and training errors are reasonably close to 
each other. Now the trained neural network can be employed 
for estimating the outputs suitable for a new set of data.  

Fig. 1 shows the data processing carried out by a typical 
neuron of a neural network. Each input value is multiplied by 
the relevant weight. It the simplest case, the inputs and biases 
are added to each other and then pass through the activation 
function in order to produce the outputs. Networks including a 
bias find the relation between the inputs and outputs much 
more easily, compared with networks without bias. Based on  

 
 
Fig. 1. Data processing in a typical cell of a neural network [11, 12]. 
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Fig. 1, the output for the ith cell is as follows: 
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The activation functions generally involve linear or 

nonlinear relationships. The most important step in a neural 
network is the training stage. 

Some statistical methods such as root mean square (RMS) 
error or mean square error (MSE) are usually employed for 
validation of the results. During the training stage, the error is 
specified by root mean square error or mean square error. In 
the latter case, MSE is calculated by the following equation: 
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in which tj is the target value for the jth output data, Oj is the 
corresponding output value and n is the number of data.  

In the present research, an FFBP neural network model with 
two layers (Fig. 2) is used for estimation of the flow curve of 
the material and the friction factor by using the load curve of 
the ring compression test and the final inner diameter of the 
ring sample as the input data. 

 
3. Application of neural network to the ring test 

3.1 The ring test 

The ring test is a widely used friction test for evaluation of 
friction factor for bulk metal forming processes, such as forg-
ing, extrusion and rolling operations. As shown in Fig. 3, this 
test is a friction sensitive experiment [3]. At low levels of 
friction, both internal and external diameters of the deformed 
ring increase. But at high frictions the internal diameter de-
creases, whereas the external diameter increases with a certain 
reduction in height. For a practical evaluation of friction re-
lated to a lubricant, the experimental data points which include 
the percentages of reductions in height and internal diameter 

of the sample are overlaid onto the calibration curves obtained 
from analytical or numerical methods [1-4]. Comparing the 
situations of experimental data points with respect to each 
curve relevant to a specific level of friction, one can determine 
the friction factor corresponding to a special lubricant or fric-
tional condition. 

 
3.2. Development of a neural network model 

Every neural network needs data for learning. For this rea-
son, many finite element (FE) simulations of the ring test have 
been carried out by means of Deform 2D FE code. In this way, 
the initial data for learning the neural network were produced. 
For each numerical analysis of the test a specific Hollomon’s 
equation was employed as the stress-strain relation of the ma-
terial: 

 
nKσ ε=  (3) 

 
in which K and n are the strength coefficient and strain hard-
ening exponent of the material, respectively. Each FE simula-
tion was performed with specified values of K, n and shear 
friction factor (m) until 60% reduction in height of the ring. 
After finishing the FE analysis, the load-displacement curve 
together with the final internal diameter of the ring was se-
lected for training the neural network model. 

It is worthy to mention that, based on the similarity laws [1], 
both the values of n and m for a model material and a lubricant 
should respectively be the same as those of the real material 
and frictional conditions. Since the model materials for physi-
cal simulation of hot and warm metal forming processes were 
concerned, different values of K, ranging from 1 to 50 MPa 
were chosen for the simulations conducted in this research 
work. The strain hardening exponent (n) was selected from 
0.01 to 0.18. In order to cover a quite full range of frictional 
conditions, FE analyses were performed for various values of 
m, ranging from 0.05 to 0.99. Theoretically m can vary be-
tween 0 and 1.  

The main objective of developing the ANN model was de-
riving the stress-strain curve of the material and interfacial 
friction factor by using the load-displacement curve of the ring 
compression test and the internal diameter of the specimen 
after 60% reduction in height. Only rings with an outer diame-
ter/inner diameter/height ratio of 6/3/2 were considered here. 

For training the network, a sixth order polynomial 
( 2 3 4 5 6

1 2 3 4 5 6 7y a a x a x a x a x a x a x= + + + + + +  where x was 
the reduction in height) was fitted on the load-displacement 

 
 
Fig. 2. A schematic diagram of the developed two-layer neural net-
work. 

 

        (a) Low friction                  (b) High friction 
 
Fig. 3. Flow of material during a ring test with different levels of fric-
tion [3]. 
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curve derived from the numerical analysis (Fig. 4). Then fac-
tors 1a  to 7a of the polynomial fitted to the specified curve 
for each simulation were selected as input parameters for 
training the network. Considering the internal diameter at 60% 
reduction in height, there was a total number of 8 parameters 
as input data for the proposed ANN model. After preparation 
of the training data, a two-layer neural network was chosen in 
Matlab software. The first layer involved 21 neurons and a 
tansig activation function, whereas the second layer included 
three neurons and a purline activation function. The tansig and 
purline functions are expressed by the following equations, 
respectively: 

 
1 exp( ) ,
1 exp( )

xy
x

− −
=

+ −
 (4) 

.y x=  (5) 
 
These activation functions are illustrated in Fig. 5. There is 

no specific rule or regulation for selection of numbers of the 
layers and neurons in a network. This has usually been carried 
out by trial and error. 

First of all, factors a1 to a7 of the load-displacement poly-
nomial together with the final internal diameter of the ring 
were considered as input data for the network. The outputs 
were strain hardening exponent, strength coefficient and the 
friction factor. However with these inputs and outputs, there 
was a problem in the training process. In this situation, be-
cause of low values of n and m, the neural network could not 
establish a suitable correlation between its weights. Hence the 
strain hardening exponent and friction factor were multiplied 
by 100 and 10, respectively, and the training of the network 
was carried out again. With these new conditions, the network 
was successfully trained and found a proper relation between 
the outputs and inputs. 

After gaining a reasonable error, it was possible to obtain 
values of K, n and m based on the load-displacement curve of 
the ring test and the final internal diameter. As the final step, 
to ensure the validity of the trained neural network, several 
new data not included in the data set for the training process, 
were input to the network. After comparing the outputs of the 

network with those obtained from actual FE simulations, it 
was found that the agreement between them was encourag-
ingly good.  

 
4. Experimental procedure 

As a widely used model material, lead was employed for 
conducting several experiments in the present investigation. 
The main objective of performing the experiments was valida-
tion of the developed neural network with the results obtained 
from practical tests. When a model material such as lead is 
used for a metal forming experimentation, the required load 
and energy together with the costs involved reduce considera-
bly [1, 2]. On the other hand, the observations can also be 
made much more easily. 

Ten rings with outer diameter, inner diameter and height of 
30, 15 and 10 mm, respectively, were prepared and com-
pressed under two different frictional conditions and with 
various reduction percentages. The maximum reduction in 
height of the ring samples was about 60% for both the fric-
tional conditions.  

Several compression tests were also conducted in order to 
obtain the stress-strain curve of the model material. This was 
necessary for performing precise FE simulations of the ring 
test and calculation of values of K and n for material under 
consideration. The nominal height and diameter of the cylin-
drical samples were 30 and 20 mm, respectively. The com-
pression tests were also conducted with grease as lubricant 

 
 
Fig. 4. A typical load-displacement curve of the ring test with the fitted
sixth-order polynomial curve. 

 

 
(a) 

 

 
(b) 

 
Fig. 5. Activation functions employed in the network of this research:
(a) Tansig function; (b) Purline function. 
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and reductions about 60%. Nevertheless the cylindrical 
specimens barreled slightly because grease did not remove the 
friction completely. Hence, it was necessary to apply appro-
priate correction factors to the calculated stresses. 

All of the experiments were carried out with a 150 KN 
servo-electrical press equipped with computer. This press, 
which can work in position or load control modes, is illus-
trated in Fig. 6. The average strain rates of all experiments 
were almost the same, namely about 0.01 s-1. 

 
5. Results and discussions 

As mentioned in the previous section, because of non-zero 
frictional condition, the specimens barreled during the com-
pression tests. Therefore, it was essential to employ appropri-
ate correction factors for modifying the calculated stresses. In 
this way, the force and stress needed for redundant deforma-
tion of the specimen can be eliminated and a corrected flow 
stress corresponding to a homogeneous deformation can be 
determined [2]. 

Using the numerical correction factors obtained from FE 
simulations for the experimental data, the stress-strain curve of 
the material was attained. Fig. 7 shows this flow curve and the 
relevant Hollomon’s equation is:   

0.2625.4  (MPa) .σ ε=  (6) 
 
In order to determine the friction factor for a special interfa-

cial condition, the FE simulations of the ring test were con-
ducted using the above-obtained stress-strain curve for various 
values of m. The calibration curves obtained with this tech-
nique are illustrated in Fig. 8 with experimental sampling 
points obtained from the ring tests. Fig. 8 implies that the 
shear friction factor corresponding to dry condition and grease 
lubricant are, respectively, 0.85 and 0.4.  

When the flow curve of the material and the shear friction 
factor of grease were employed for the finite element simula-
tion of the compression test, the load-displacement curve 
shown in Fig. 9 was obtained. 

The experimental curve is also overlaid in this figure. The 
agreement between numerical and experimental curves is 
encouragingly good. This implies that the FE simulation of the 

  
Fig. 6. The servo-electrical universal testing machine used for conduct-
ing the experiments. 
 

 
 
Fig. 7. The experimental flow curve of the lead. 

 

 
 
Fig. 8. The numerical calibration curves with the experimental results 
superimposed. 

 

 
 
Fig. 9. The experimental and FE load-displacement curves obtained for 
the compression test. 
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compression test was carried out with quite accurate flow 
curve and friction factor. It is notable that, although the n 
value of the material selected for experimentation is out of the 
initial range of n employed for training the network, the 
agreement between the predictions of ANN and the experi-
mental results is reasonably good. This is due to iterative na-
ture of the method and use of each new set of data for retrain-
ing the ANN under consideration. 

Fig. 10 illustrates the experimental load-displacement 
curves achieved from the ring tests with two previously men-
tioned frictional conditions. It is obvious that the greater the 
friction factor, the larger is the required forming load. Two 
sixth-order polynomials were fitted to these curves. For each 
curve, factors a1 to a7 together with the final internal diameter 
of the ring were input to the trained neural network to obtain 
values of K, n and m for the corresponding ring test. To im-
prove the accuracy of the ANN under consideration, the finite 
element analysis of the ring test was carried out with the first 
series of outputs. Then the results of this simulation together 
with the previous data were employed for training the ANN. 
This process was repeated until the desired accuracy was 
achieved. The iterated FE simulation of the ring test and train-
ing stage of the network increase the capability of the pro-
posed ANN for processing the new data. The final results 
obtained from the ANN for both the frictional conditions are 
listed in Table 1. 

Fig. 11 shows the flow curves predicted by the developed 
ANN technique superimposed with the experimental stress-
strain curve obtained from the compression test. It can be seen 
in Table 1 and Fig. 11 that the estimations made by the devel-
oped ANN are quite reasonable, especially when the slight 
differences between the material properties of the ring and 
compression test samples are kept in mind. These differences 

might be due to casting and/or machining conditions or other 
operations for the preparation of the specimens. It is worthy to 
mention that depending on how a new data set is close to the 
initial inputs used for training of the network; the number of 
iteration may differ from 1 to 3. 

The load-displacement curves are illustrated in Fig. 12. The 
predicted and actual loads for three different displacements, 
namely 2, 4 and 6 mm are also summarized in Table 2. The 
differences between the estimated and real values are gener-
ally smaller for grease lubricant, compared with dry condi-

Table 1. Final results obtained from the developed ANN for the ring 
tests performed with two friction conditions. 
 

m n K Lubrication 
condition 

0.34 0.29 24.5 Grease 

0.76 0.29 26.8 Dry 

 
 

 
 
Fig. 10. Experimental load-displacement curves obtained from the ring 
tests with two different frictional conditions. 

Table 2. FE load predictions based on the ANN results, compared with 
the relevant experimental loads for various frictional conditions and 
ram displacements. 
 

Force (kN) 

Grease Dry Disp. 
(mm) 

Exp. Predicted Error 
(%) Exp. Predicted Error

(%) 
2 13.3 12.5 6.2 15.6 14.3 8.6 

4 23.6 22.1 6.4 27.0 26.7 1.1 

6 43.6 45.4 4.0 55.6 67.7 21.8

 
 

 
 
Fig. 11. Flow curves predicted by the developed ANN with superim-
posed experimental stress-strain curve of the lead. 

 

 
 
Fig. 12. Correlations between the FE load curves, obtained based on 
the ANN predictions, and the corresponding experimental ones for ring 
tests with various frictional conditions. 
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tions. The deviations could be due to greater changes in the 
value of friction factor for the dry condition, as can be ob-
served in Fig. 8. It is worthy to mention that despite the test 
conditions, the friction factor was constant during each FE 
simulation of the ring test. The developed ANN was also 
trained based on this situation. Therefore, considering this 
point, one can conclude that the agreement between actual and 
predicted forces is reasonably good.  

The sixth order polynomials determined for the experimen-
tal load-displacement curves, which coefficients were em-
ployed as input to the ANN, were as follows: 

 
Fdry = –5.574x6 + 106.5x5 – 708.3x4 + 2187x3  

–3133x2 + 6661x + 5560 (7) 

Fgrease = 0.382x6 + 5.499x5 – 98.46x4 + 507.9x3  

–846x2 + 4328x + 5337. (8) 

 
To obtain more accurate results, the network should be 

trained with more experimental findings. R-square (root mean 
square) values together with the predicted forces versus the 
experimental loads are plotted in Figs. 13 and 14. R-square is 
an index showing how successful the fit is in describing the 
variation of the data. The values of this parameter are 0.99 and 

0.97 for the grease lubricant and dry conditions, respectively. 
The comparisons made in the last three figures, implies that 
there is an encouraging agreement between the actual forming 
loads with those predicted by the proposed ANN. 

 
6. Conclusion 

In the present research work, a two-layer feed-forward 
back-propagation (FFBP) artificial neural network was em-
ployed and trained in order to predict the flow curve of the 
material and the interfacial friction factor based on the load-
displacement curve of a ring test and the final internal diame-
ter of the specimen. In a feed-forward architecture, there is no 
returning connection from output neurons to the input ones. 
On the other hand, one of common algorithms for adjusting 
the weights is back-propagation algorithm, which is a sort of 
supervised learning techniques. The procedure, proposed in 
this paper, is a novel technique and the results presented and 
discussed in the previous sections proved its accuracy and 
appropriate capability. One of important advantages of the 
proposed method is that it is not necessary to interrupt the ring 
test to measure various geometrical dimensions of the sample. 
In other words, the whole experiment can be performed in just 
one step. This benefit is very helpful in doing the tests at ele-
vated temperatures. 

It was found that the precision of the network was higher 
for low frictions compared with high frictions. This could be 
due to higher variation of the actual friction factor at the end 
stage of the ring test for higher levels of friction. It seems that 
training the network with more experimental results obtained 
from the ring tests at high frictions could improve the accu-
racy of the network at this level of friction. 

Finally, it should be claimed that during each FE analysis, 
the friction factor is constant, whereas in a practical ring test it 
may vary. This variation could due to any change in the 
roughness of the test sample and/or die surfaces or variations 
of the contact pressure at the tool-workpiece interface. There-
fore, FE modeling of the ring test with variable friction factor 
and/or training the network with more experimental findings 
could provide an excellent accuracy for the developed ANN. 
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